If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-29x-108=0
a = 14; b = -29; c = -108;
Δ = b2-4ac
Δ = -292-4·14·(-108)
Δ = 6889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6889}=83$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-83}{2*14}=\frac{-54}{28} =-1+13/14 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+83}{2*14}=\frac{112}{28} =4 $
| 100=-4.9t+49t+1.5 | | 33=9x+27 | | 2-2=17x+6x | | 56=15y-8y | | -7x-10-15x=22x+83- | | 7/8x=7/56 | | 7x+17-6x=-8+(-10) | | 5w+12-8=42 | | y+3.2=-8.5-4.9 | | -5=x-5/9 | | 9y+6=43.8 | | 4(x+9)x=6 | | -14+19=m-9 | | 3.5x-2=19 | | x²+3x-40=0 | | 2.1+2t=0.5 | | 8+11+6=7x | | 1-3v=-11 | | -5+2.6d=14.02 | | g/4-9=-6.23 | | x²+3x-12=93 | | -6(n+3)+20=-4n-4 | | k/2+3.54=6.54 | | 6-9×5x+4=8 | | y/3+-9.7=-10.5 | | -7x+8=9x-8 | | 8u=42+2u | | k-28=15 | | X²-9.0x=15.75 | | X-9x+4x=0 | | |-2x-5|=|-9x+3| | | 5/9x-5/3=3/4x-12 |